
Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 277 – 292, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Guidelines for Benchmarking the Performance
of Ontology Management APIs

Raúl García-Castro and Asunción Gómez-Pérez

Ontology Engineering Group, Laboratorio de Inteligencia Artificial,
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia, asun}@fi.upm.es

Abstract. Ontology tools performance and scalability are critical to both the
growth of the Semantic Web and the establishment of these tools in the
industry. In this paper, we present briefly the benchmarking methodology used
to improve the performance and the scalability of ontology development tools.
We focus on the definition of the infrastructure for evaluating the performance
of these tools’ ontology management APIs in terms of its execution efficiency.
We also present the results of applying the methodology for evaluating the API
of the WebODE ontology engineering workbench.

1 Introduction

The lack of mechanisms to evaluate ontology tools is an obstacle to their use in
companies. Performance is one of the critical requirements requested for ontology
tools and the scalability of these tools is a primary need.

To the best of our knowledge, no one has evaluated ontology development tools
according to their performance. Some general evaluation frameworks for ontology
tools have been proposed by: Duineveld et al. [1], the deliverable 1.3 of the OntoWeb
project [2] and Lambrix et al. [3]; and the EON workshops series [4, 5, 6] focus on
the evaluation of ontology tools but they have not dealt with their performance yet.

The evaluation of the performance of ontology development tools is tightly related
to the evaluation of their scalability. To this end, the tools must be evaluated
according to different workloads, paying special attention to the effect of high
workloads on the tool performance. Magkanaraki et al. [7] and Tempich and Volz [8]
performed structural analyses of ontologies in order to define these workloads.
Workload generators such as OntoGenerator [2] and the Univ-Bench Artificial data
generator [9] produce ontologies for performing experiments in an automatic way and
according to some parameters.

In this paper, we present an approach and a realization of a benchmarking
methodology with regard to the performance and the scalability of ontology
development tools. The advantage of using a benchmarking methodology rather than
an evaluation one is that developers will be able to obtain both a continuous
improvement in their tools and the best practices that are performed in the area,
supporting the industrial applicability of ontology tools.

As we will see in the next section, experimentation is a key part of any
benchmarking methodology. This paper presents a general infrastructure to evaluate

278 R. García-Castro and A. Gómez-Pérez

the performance and the scalability of ontology development tools by assessing the
performance of the methods of their ontology management APIs in terms of their
execution efficiency.

It also presents the results of applying the proposed infrastructure for evaluating
the performance and the scalability of the ontology management API of the WebODE
ontology engineering workbench. WebODE [10] provides services for editing and
browsing ontologies, for importing and exporting ontologies to classical and semantic
web languages, for evaluating ontologies, for mapping ontologies, etc. As we need a
tool for generating ontologies in WebODE’s knowledge model, we have developed
the WebODE Workload Generator that generates synthetic WebODE ontologies
according to a predefined structure and to a load factor.

The contents of this paper are the following: Section 2 presents the benchmarking
methodology for ontology tools. According to this methodology, Section 3 presents
the benchmarking goal and the metrics to be used for evaluating the performance of
the ontology management APIs of ontology development tools; Section 4 presents a
detailed definition of the infrastructure needed for evaluating the performance of these
APIs and an explanation of how this infrastructure was instantiated for evaluating
WebODE’s API. Sections 5 and 6 present the evaluation of WebODE’s API and the
analysis of the results of this evaluation, respectively. Finally, Section 7 presents the
conclusions obtained and the related future work.

Out of the scope of this paper are other evaluation criteria like stability, usability,
interoperability, etc. as well as the evaluation of the performance of other ontology
development tool functionalities such as user interfaces, reasoning capabilities when
dealing with complex queries, or ontology validators.

2 Benchmarking Methodology for Ontology Tools

In the last decades, the word benchmarking has become relevant within the business
management community. One of the definitions widely known was given by
Spendolini [11] who defines benchmarking as a continuous, systematic process for
evaluating the products, services, and work processes of organisations that are
recognised as representing best practices for the purpose of organisational
improvement.

The Software Engineering community does not have a common benchmarking
definition. Some authors, like Kitchenham [12], consider benchmarking as a software
evaluation method. For her, benchmarking is the process of running a number of
standard tests using a number of alternative tools/methods and assessing the relative
performance of the tools in those tests. Other authors, like Wohlin et al. [13], adopt
the business benchmarking definition, defining benchmarking as a continuous
improvement process that strives to be the best of the best through the comparison of
similar processes in different contexts.

This section summarizes the benchmarking methodology developed by the authors
in the Knowledge Web Network of Excellence [14]. The benchmarking methodology
provides a set of guidelines to follow in benchmarking activities over ontology tools.
This methodology adopts and extends methodologies of different areas such as
business community benchmarking, experimental software engineering and software
measurement as described in [14].

 Guidelines for Benchmarking the Performance of Ontology Management APIs 279

At the time of writing this paper, this methodology is being used in Knowledge
Web for benchmarking the interoperability of ontology development tools.

Fig. 1 shows the main phases of the benchmarking methodology for ontology tools,
which is composed of a benchmarking iteration that is repeated forever.

Fig. 1. Knowledge Web benchmarking methodology [14]

Each benchmarking iteration is composed of three phases (Plan, Experiment and
Improve) and ends with a Recalibration task:

• Plan phase. Its main goal is to produce a document with a detailed proposal for
benchmarking. It will be used as a reference document during the benchmarking,
and should include all the relevant information about it: its goal, benefits and
costs; the tool (and its functionalities) to be evaluated; the metrics to be used to
evaluate these functionalities; and the people involved in the benchmarking. The
last tasks of this phase are related to the search of other organisations that want to
participate in the benchmarking with other tools, and to the agreement on the
benchmarking proposal (both with the organisation management and with the
other organisations) and on the benchmarking planning.

• Experiment phase. In this phase, the organisations must define and execute the
evaluation experiments for each of the tools that participate on the benchmarking.
The evaluation results must be compiled and analysed, determining the practices
that lead to these results and identifying which of them can be considered as best
practices.

• Improve phase. The first task of this phase comprises the writing of the
benchmarking report, and this must include: a summary of the process followed,
the results and the conclusions of the experimentation, recommendations for
improving the tools, and the best practices found during the experimentation. The
benchmarking results must be communicated to the participant organisations and
finally, in several improvement cycles, the tool developers should perform the
necessary changes to improve their tools and monitor this improvement.

While the three phases mentioned before are devoted to the improvement of the tools,
the goal of the Recalibration task is to improve the benchmarking process itself using
the lessons learnt while performing it.

280 R. García-Castro and A. Gómez-Pérez

3 Plan Phase

In this section we present the most relevant tasks from the Plan phase of the
methodology. We will focus on those related to the identification of the benchmarking
goals, the tool functionalities and the metrics; as these are the ones that influence the
experimentation.

In order to evaluate the performance of ontology development tools, we make the
assumption that these tools provide an ontology management API with methods to
insert, update, remove, and query ontology components.

Therefore, our goal in the benchmarking is to improve the performance of the
methods provided by the ontology management APIs of the ontology
development tools.

For identifying the tool functionalities and metrics to be considered in the
benchmarking, we have followed the Goal/Question/Metric (GQM) paradigm [15].
The idea beyond this is that any software measurement activity should be preceded by
the identification of a software engineering goal, which leads to questions and that in
turn lead to actual metrics. The questions and metrics derived from our goal are
presented in Fig. 2. These questions and metrics show that the tool functionalities that
are relevant in the benchmarking are the methods of the ontology management APIs,
and that the metric to use is the execution time of the methods over incremental load
states. After performing the experiments, the analysis of their results will provide
answers to these questions.

Fig. 2. Questions and metrics obtained through the GQM approach

4 Experiment Phase

This section presents the infrastructure needed when defining and executing
experiments to evaluate the performance of the ontology management APIs of
ontology development tools. We also identify the variables that influence the
execution time of the methods and, in consequence, the evaluation results.

The evaluation infrastructure contains the different modules needed to achieve
the benchmarking goal. Fig. 3 presents the main modules and the arrows represent the
information flow between them.

 Guidelines for Benchmarking the Performance of Ontology Management APIs 281

These modules are described in the next sections, showing the main decisions
taken regarding their design and implementation and giving examples according to
the instantiation of the infrastructure for the WebODE ontology engineering
workbench. In order to have a portable infrastructure, we have implemented it in Java,
using only standard libraries and with no graphical components.

Fig. 3. Evaluation infrastructure

4.1 Performance Benchmark Suite

The Performance Benchmark Suite is a Java library that provides methods for
executing each of the benchmarks that compose the benchmark suite. This benchmark
suite should be developed taking into account the desirable properties of a benchmark
suite [16, 17, 18, 19], that is, accessibility, affordability, simplicity, representativity,
portability, scalability, robustness, and consensus.

In order to perform an evaluation of the complete system, every method in the
ontology management API is present in the benchmark suite. For each of these
methods, different benchmarks have been defined according to the changes in the
methods’ parameters that affect the performance.

The execution of the benchmarks is parameterised accordant with the parameter
number of executions (N), which defines the number of consecutive executions of a
method in a single benchmark whose execution times are measured. Moreover, the
method is executed a certain number of times before starting the measurement so as to
stabilise the ontology development tool.

Fig. 4. Benchmarks defined for the method insertConcept

282 R. García-Castro and A. Gómez-Pérez

A benchmark executes just one method N times consecutively and stores in a text
file the wall clock times elapsed in the method executions. The other operation
performed by a benchmark is to restore the load state of the tool in case it changes
during the benchmark execution.

In the case of WebODE, its ontology management API is composed of 72
methods. From these methods, according to the different variations in their input
parameters, we defined 128 benchmarks1.

For example, Fig. 4 shows the two benchmarks defined for the method
insertConcept parameterized following the number of executions (N).

4.2 Workload Generator

The Workload Generator is a Java library that generates synthetic ontologies
accordant with a predefined structure and to a load factor to insert them into the
ontology development tool. The workload present in the ontology development tool
must allow running the benchmarks with no errors and with different load factors.

The structure of the workload has been defined according to the execution needs of
the benchmarks in order to run their methods a certain number of times (N) with no
errors. For example, if a benchmark inserts one concept in N ontologies, these N
ontologies must be present in the tool for a correct execution of the benchmark.
Therefore, the execution needs of all the benchmarks in the benchmark suite define all
the ontology components that must exist in the ontology development tool in order to
execute every benchmark with no errors.

To define the workload independently of the number of executions of a method in
a benchmark (N), we use a new parameter that defines the size of the ontology data.
This is named the load factor (X) of the ontology development tool. With this load
factor, we can define workloads of arbitrary size, but it must be taken into account
that to execute the benchmark with no errors the load factor must be greater or equal
to the number of executions of a method in a benchmark.

Hence, the workload used when executing all the benchmarks has the same
structure as the execution needs of all the benchmarks but is parameterised to a load
factor instead of to the number of executions of a method in a benchmark.

Table 1. Execution needs of the benchmarks whose methods insert and remove concepts

Benchmark Operation Execution needs
benchmark1_1_08 Inserts N concepts in an ontology 1 ontology
benchmark1_1_09 Inserts a concept in N ontologies N ontologies
benchmark1_3_20 Removes N concepts from an ontology 1 ontology with N concepts
benchmark1_3_21 Removes a concept from N ontologies N ontologies with one concept

Table 2. Execution needs of the benchmarks shown in Table 1

Benchmarks Execution needs
benchmark1_1_08, benchmark1_1_09,
benchmark1_3_20, and benchmark1_1_21

1 ontology with N concepts and
N ontologies with1 concept

1 http://kw.dia.fi.upm.es/wpbs/WPBS_benchmark_list.html

 Guidelines for Benchmarking the Performance of Ontology Management APIs 283

In the case of WebODE, Table 1 shows the execution needs of each of the four
benchmarks whose methods insert and remove concepts in an ontology, being N the
number of times that the method is executed. Table 2 shows the execution needs for
executing the four benchmarks abovementioned with no errors.

4.3 Benchmark Suite Executor

The Benchmark Suite Executor is a Java application that controls the automatic
execution of both the Workload Generator and the Performance Benchmark Suite.

This module defines the values of the variables that influence the evaluation: the one
related to the infrastructure, that is, the ontology development tool’s load factor (X); and
the execution parameter of the benchmarks, that is, the number of executions (N).

The Benchmark Suite Executor guarantees that the load present in the ontology
development tool allows executing the benchmarks with no errors (e.g. if a
benchmark deletes concepts, these concepts must exist in the tool).

During the evaluation, the Benchmark Suite Executor performs two steps:

1. To prepare the system for the evaluation. It uses the Workload Generator for
generating ontologies according to the load factor, and inserts them into the tool.

2. To execute the benchmark suite. It executes all the benchmarks that compose
the benchmark suite. Each benchmark first stabilises the system by executing its
corresponding method an arbitrary number of times, and then executes the
method N more times, measuring the execution time. These N measurements of
the execution time of the method are stored in a text file in the Measurement
Data Library.

4.4 Measurement Data Library

The Measurement Data Library stores the results of the different benchmark
executions. As the benchmarks provide their results in a text file, we do not propose a
specific implementation for the Measurement Data Library.

Fig. 5. Structure of the Measurement Data Library

The files with the results are stored in a hierarchical directory tree to be accessed
easily. The structure of the tree, shown in Fig. 5, is the following:

284 R. García-Castro and A. Gómez-Pérez

• A first level with the number of the evaluation (XX).
• A second level with the ontology development tool’s load factor (YYYY).
• A third level with the number of executions of the benchmark (ZZZ).

4.5 Statistical Analyser

Any statistical tool can be used for analysing the results of the benchmarking.
Nevertheless, a tool capable of automating parts of the analysis process, like report
and graph generation, would facilitate the analysis of the results to a large extent.

As can be seen in Fig. 6, from the results of a benchmark stored in the
Measurement Data Library, we can obtain different information that can be used to
evaluate the ontology development tools:

• Graphs that show the behaviour of the execution times.
• Statistical values worked out from the measurements.

Fig. 6. Different information that can be extracted from the results

4.6 Variables that Influence the Execution Time

According to this evaluation infrastructure, there will be different variables that
influence the execution time of a method. Some of them will be related to the features
of the computer where the evaluation is performed (hardware configuration, software
configuration and computer load) and one will be related to the infrastructure

 Guidelines for Benchmarking the Performance of Ontology Management APIs 285

proposed (the load of the ontology development tool). To compare the results of two
benchmarks, they must be executed under the same conditions. The definitions of
these variables are the following:

• Hardware configuration. It is the configuration of the hardware of the computer
where the ontology development tool is running.

• Software configuration. It is the configuration of the operating system and of
the software needed to execute the ontology development tool.

• Computer load. It is the load that affects the computer where the ontology
development tool is running.

• Ontology development tool load. It is the amount of ontology data that the
ontology development tool stores.

5 Evaluating WebODE’s Ontology Management API

The Experiment phase of the benchmarking methodology comprises the evaluation of
the tool once the evaluation infrastructure has been defined and implemented.
According to the infrastructure presented in section 4, we defined the benchmark suite
and implemented the necessary modules regarding WebODE and its ontology
management API, and we performed the evaluation on WebODE.

From the different variables that affect the evaluation, we only considered changes
in the tool’s load variable, to know its effect in WebODE’s performance. The other
three variables took fixed values during the evaluation so they did not affect the
execution times. Furthermore, to avoid other non-controlled variables that may affect
the results, the computer used for the evaluation was isolated: it had neither network
connection nor user interaction. Then, we defined the values that these variables took
during the evaluation:

• Hardware configuration. The computer was a Pentium 4 2.4 Ghz monoprocessor
with 256 Mb. of memory.

• Software configuration. Each software’s default configuration was used:
Windows 2000 Professional Service Pack 4; SUN Java 1.4.2_03; Oracle version
8.1.7.0.0 (the Oracle instance’s memory configuration was changed to: Shared
pool 30 Mb., Buffer cache 80 Mb., Large pool 600 Kb., and Java pool 32 Kb.);
Minerva version 1 build 4; and WebODE version 2 build 8.

• Computer load. This load was the corresponding to the computer just powered
on, with only the programs and services needed to run the benchmarks.

• Ontology development tool load. The benchmark suite was executed ten times
with the following load factors: (X=500, 1000, 1500, 2000, 2500, 3000, 3500,
4000, 4500, and 5000). As with a load factor of 5000 we obtained enough data to
determine the methods’ performance, the benchmarks have not been executed
with higher load factors.

When running all the benchmarks in the benchmark suite:

• The method was first executed 100 times to stabilise the system before taking
measures and to avoid unexpected behaviours in WebODE’s initialisation.

286 R. García-Castro and A. Gómez-Pérez

• The number of executions (N) of a method in a benchmark was 400. With the
aim of checking that 400 executions is a valid sample size, we have run several
benchmarks with higher and lower number of executions and we have confirmed
that the results obtained are virtually equivalent. We have not used a higher
sample because the slightest precision improvement would mean a much higher
duration of the benchmark suite execution.

After executing the 128 benchmarks of the benchmark suite with the 10 different
load factors, we obtained 1280 text files, each with 400 measurements.

The source code of the infrastructure implemented for WebODE is published in a
public web page2, so anyone should be able to replicate the experiments and to
achieve the same conclusions. The web page also contains the results obtained in this
evaluation and all the statistical values and graphs worked out from them.

6 Analysis of the Evaluation Results

We have regarded the results of executing the benchmark suite with the maximum
load factor used (X=5000) to be able to clearly differentiate the execution times.
When analysing the effect of WebODE’s load in the execution times of the methods,
we have considered the results of executing the benchmark suite from a minimum
load state (X=500) to a maximum load state (X=5000). In every case, we have
considered a number of executions (N) of 400.

A first rough analysis of the results of the benchmark suite execution showed two
main characteristics:

• Observing the graphs of the execution times measured in a benchmark, we saw
that execution times are mainly constant. This can be seen in Fig. 7 that shows
the execution times of running the method removeConcept 400 times with a load
factor of 5000 in benchmark1_3_20.

• After running normality tests over the measurements, we confirmed that the
distributions of the measurements were non-normal. Therefore, we could not rely
on usual values such as mean and standard deviation for describing them and thus
we used robust statistical values like the median, the upper and lower quartiles,
and the interquartile range (upper minus lower quartile).

Fig. 7. Execution times of removeConcept in benchmark1_3_20

2 http://kw.dia.fi.upm.es/wpbs/

 Guidelines for Benchmarking the Performance of Ontology Management APIs 287

The next sections show the specific metrics used for analysing the performance of
the methods and the conclusions obtained from the execution results, that answer the
questions previously stated in Fig. 2.

6.1 Metric for the Execution Time

The metric used for describing the execution time of a method in a benchmark has
been the median of the execution times of the method in a benchmark execution.

Fig. 8 shows the histogram of the medians of the execution times of all the API
methods. These medians range from 0 to 1051 milliseconds, with a group of values
higher than the rest. The medians in this group belong to 12 benchmarks that execute
8 methods (as different benchmarks have been defined for each method). These 8
methods, with a median execution time higher than 800 ms, have been selected for the
improvement recommendations. The rest of the median execution times of the
methods are lower than 511 ms, being most of them around 100 ms.

Bearing in mind the kind of operation that the methods carry out (inserting,
updating, removing, or selecting an ontology component), we did not find significant
differences between the performances of each kind of method.

Taking into account what kind of element of the knowledge model (concepts,
instances, class attributes, instance attributes, etc.) a method manages, in the slowest
group almost every method that manages relations between concepts are present.
Methods that manage instance attributes also have high execution times, and the rest
of the methods behave similarly; the methods that stand out are those that manage
imported terms and references since they are the ones with lower execution times.

Fig. 8. Histogram of the medians of the execution times

6.2 Metric for the Variability of the Execution Time

The metric used for describing the variability of the execution time of a method in a
benchmark has been the interquartile range (IQR) of the execution times of the
method in a benchmark execution.

Fig. 9 shows the histogram of the IQRs of the execution times. Almost every
method has an IQR from 0 to 11 ms, which is a low spread considering that the
granularity of the measurements is 10 milliseconds. The only exceptions are the three
methods shown in the figure. The method getAvailableOntologies has been selected
for the improvement recommendations because of its atypical IQR value.

288 R. García-Castro and A. Gómez-Pérez

Fig. 9. Histogram of the interquartile ranges of the execution times

6.3 Metric for the Anomalies in the Execution Time

The metric used for describing the anomalies in the execution time of a method in a
benchmark has been the percentage of outliers in the execution times of the method
in a benchmark execution.

The traditional method for calculating the outliers is to consider as potential outlier
values the measurements beyond the upper and lower quartiles and to add and
subtract respectively 1.5 times the interquartile range [20]. As the Java method used
for measuring time (java.lang.System.currentTimeMillis()) in the Windows platform
has a precision of tens of milliseconds, in the results we frequently encountered
interquartile ranges of zero milliseconds. This made us consider as outliers every
determination that differed from the median. With the objective of fixing this
precision fault, we have augmented the interquartile range when calculating the
outliers to include half the minimal granularity (5 milliseconds) in both boundaries.

Fig. 10 shows the histogram of the percentage of outliers in the execution times of
the methods. Most of the benchmarks range from 0 to 3.75% of outliers. These values
confirm the lack of anomalies except the peaks in the execution times that can be seen
in the graphs. The only two methods to emphasize, shown in the figure, have been
selected for the improvement recommendations.

Fig. 10. Histogram of the percentage of outliers of the execution times

 Guidelines for Benchmarking the Performance of Ontology Management APIs 289

6.4 Effect of Changes in the Parameters of a Method

To analyse if changes in the parameters of a method affect the method performance,
we compared the medians of the execution times of the benchmarks that use the same
method.

The performance of 21 methods varies when its input parameters are changed, but
this variation is lower than 60 milliseconds except in the five methods shown in
Fig. 11, that have been selected for the improvement recommendations. Fig. 11 also
shows the comparison of the execution times of the method insertConcept in
benchmark1_1_08 and in benchmark1_1_09.

Fig. 11. Execution times of insertConcept in benchmark1_1_08 and benchmark1_1_09

6.5 Effect of Changes in WebODE’s Load

To analyse the effect of WebODE’s load in the execution times of the methods, we
studied the medians of the execution times of the methods from a minimum load state
(X=500) to a maximum load state (X=5000). We estimated the function that these
medians define by simple linear regression and considered its slope in order to
examine the relationship between the load and the execution time of the methods.

Fig. 12. Evolution of the execution times when increasing WebODE’s load

Fig. 12 shows, for every benchmark, the functions defined by the median execution
times with the different load factors. The slopes of the functions range from 0 to 0.1

290 R. García-Castro and A. Gómez-Pérez

except in 8 methods. The 8 methods whose execution times are higher than the rest
are also the methods whose performance is more influenced by the load, and have
been selected for the improvement recommendations.

6.6 Improvement Recommendations

From the analysis of the results, we produced a report stating the recommendations to
improve WebODE’s performance. These recommendations include the methods of
the WebODE ontology management API identified in the previous sections.

Table 3 shows a summary of the improvement recommendations with 12 of the 72
WebODE’s API methods included in them, and the reasons for their inclusion.

Table 3. Methods in the improvement recommendations

 Execution
time >
800 ms

Interquartile
range >
150 ms

Outlier
values >
3.75%

Execution time
variation >
60 ms

Slope when
increasing load
> 0.1

removeTermRelation X X
getInheritedTermRelations X X
insertConcept X X X
insertRelationInstance X X X
openOntology X X X
getAdHocTermRelations X X
getTermRelations X X
getAvailableOntologies X X X
addValueToClassAttribute X
insertConstant X
updateSynonym X
getInstances X

7 Conclusions and Future Work

In this paper we provide an overview of the benchmarking methodology for ontology
tools developed by the authors in Knowledge Web. We define some guidelines when
using this methodology to improve the performance and the scalability of ontology
development tools by evaluating the performance of their ontology management
APIs’ methods.

To support the experimentation tasks of the methodology, we provide a detailed
definition of an infrastructure for evaluating the performance and the scalability of
ontology development tools’ ontology management APIs. We have instantiated this
infrastructure for evaluating the ontology management API of the WebODE ontology
engineering workbench and the results obtained after the evaluation provide us with
precise information on WebODE’s performance.

The evaluation infrastructure can be instantiated for evaluating other ontology
development tools that provide ontology management APIs. Taking as a starting point
the methods of the ontology management API of a certain tool, the following tasks
should be performed:

 Guidelines for Benchmarking the Performance of Ontology Management APIs 291

• Benchmarks that evaluate these methods should be defined, and the Performance
Benchmark Suite module should be implemented for executing them.

• The Workload Generator should also be implemented to generate workload
according to these methods’ needs.

• The rest of the modules (Benchmark Suite Executor, Measurement Data Library
and Statistical Analyser) already instantiated for WebODE could be used for
another tool with minimal or no changes.

To obtain all the benefits of the benchmarking, like the extraction of best practices,
other ontology development tools should participate in it. In this case, there are other
tasks of the methodology that should be considered and that are not covered by this
paper such as the search of other organisations and tools for participating in the
benchmarking, the planning of the benchmarking, and the improvement on the tools.
To perform a benchmarking like this, the evaluation infrastructure must be the same
for every tool. Therefore:

• The Workload Generator should be modified in order to generate workloads
independent of the tool, and thus the same workload can be used for every tool.

• The Performance Benchmark Suite should be modified to include only the
methods common to all the tools or to use a common ontology management API
such as OKBC [21].

Although the benchmark suite execution is automatic, the evaluation infrastructure
would benefit significantly if some automatic analysis and summary of the results
could be carried out, as there are plenty of them.

The WebODE Workload Generator could be improved and could generate
ontologies with other structure or characteristics. In consequence, this module could
be employed in other kind of evaluations and, thanks to the WebODE export services
to different formats and languages (like RDF(S) or OWL); these ontologies could be
used in evaluations performed over other tools, not just over WebODE.

Acknowledgments

This work is partially supported by a FPI grant from the Spanish Ministry of
Education (BES-2005-8024), by the IST project Knowledge Web (IST-2004-507482)
and by the CICYT project Infraestructura tecnológica de servicios semánticos para la
web semántica (TIN2004-02660). Thanks to Rosario Plaza for reviewing the grammar
of this paper.

References

1. A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, and V.R. Benjamins. Wondertools? a
comparative study of ontological engineering tools. In Proceedings of the 12th
International Workshop on Knowledge Acquisition, Modeling and Management
(KAW'99), Banff, Canada, 1999. Kluwer Academic Publishers.

2. Ontoweb deliverable 1.3: A survey on ontology tools. Technical report, IST OntoWeb
Thematic Network, May 2002.

292 R. García-Castro and A. Gómez-Pérez

3. P. Lambrix, M. Habbouche, and M. Pérez. Evaluation of ontology development tools for
bioinformatics. Bioinformatics, 19(12):1564-1571, 2003.

4. J. Angele and Y. Sure (eds.). Proceedings of the 1st International Workshop on Evaluation
of Ontology-based Tools (EON2002), Sigüenza, Spain, September 2002.

5. Y. Sure and O. Corcho (eds.). Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools (EON2003), Florida, USA, October 2003.

6. Y. Sure, O. Corcho, J. Euzenat, T. Hughes (eds.). Proceedings of the 3rd International
Workshop on Evaluation of Ontology-based Tools (EON2004), Hiroshima, Japan,
November 2004.

7. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking RDF
schemas for the semantic web. In Proceedings of the First International Semantic Web
Conference, pages 132–146. Springer-Verlag, 2002.

8. C. Tempich and R. Volz. Towards a benchmark for semantic web reasoners - an analysis
of the DAML ontology library. In Proc. of the 2nd International Workshop on Evaluation
of Ontology-based Tools (EON2003), Florida, USA, October 2003.

9. Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large OWL
datasets. In Proceedings of the 3rd International Semantic Web Conference (ISWC2004),
pages 274.288, Hiroshima, Japan, November 2004.

10. J.C. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-Pérez. WebODE in a nutshell.
AI Magazine. 24(3), Fall 2003, pp. 37-47.

11. M. Spendolini. The Benchmarking Book. AMACOM, New York, NY, 1992.
12. B. Kitchenham. DESMET: A method for evaluating software engineering methods and

tools. Technical Report TR96-09, Department of Computer Science, University of Keele,
Stanfordshire, UK, 1996.

13. C. Wohlin, A. Aurum, H. Petersson, F. Shull, and M. Ciolkowski. Software inspection
benchmarking - a qualitative and quantitative comparative opportunity. In Proceedings of
8th International Software Metrics Symposium. 118-130, 2002.

14. R. García-Castro, D. Maynard, H. Wache, D. Foxvog, and R. González-Cabero. D2.1.4
Specification of a methodology, general criteria and benchmark suites for benchmarking
ontology tools. Technical report, Knowledge Web, December 2004.

15. V.R. Basili, G. Caldiera, D.H. Rombach. The Goal Question Metric Approach.
Encyclopedia of Software Engineering, 2 Volume Set Willey, pp 528-532, 1994.

16. J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, R.A. Davey. A Methodology for
Benchmarking Java Grande Applications. EPCC, June 1999.

17. B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula, R. Brucks, E. Huh.
DynBench: A Dynamic Benchmark Suite for Distributed Real-Time Systems. IPDPS
Workshop on Embedded HPC Systems and Applications. S. Juan, Puerto Rico, 1999.

18. S. Sim, S. Easterbrook, and R. Holt. Using benchmarking to advance research: A
challenge to software engineering. In Proceedings of the 25th International Conference on
Software Engineering (ICSE'03), pages 74-83, Portland, OR, 2003.

19. F. Stefani, D. Macii, A. Moschitta, and D. Petri. FFT benchmarking for digital signal
processing technologies. In 17th IMEKOWorld Congress, Dubrovnik, June 2003.

20. W. Mendenhall and T. Sincich. Statistics for Engineering and the Sciences, 4th Edition.
Englewood Cliffs, NJ. Prentice Hall, 1995.

21. V.K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, J.P. Rice. The Generic Frame Protocol
2.0. Technical Report, Stanford University, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

