Towards the improvement of the Semantic Web
technology

Raul Garcia-Castro

Ontology Engineering Group, Departamento de Inteligencia Artificial.
Facultad de Informética, Universidad Politécnica de Madrid, Spain
rgarcia@fi.upm.es

Abstract. The Semantic Web technology needs to be thoroughly evalu-
ated for providing objective results and to attain a massive improvement
in their quality in order to be consolidated in the industrial and in the
academic world. This paper presents software benchmarking as a process
to carry out over the Semantic Web technology in order to improve it and
to search for best practices. It also describes a software benchmarking
methodology and provides recommendations for performing evaluations
in benchmarking activities.

1 Introduction

The Semantic Web technology has improved considerably since the development
of the first tools in the nineties and, although it has been mainly used in re-
search laboratories, in recent years companies have started to be interested in
the Semantic Web technology and in the applications using this technology.

In order to consolidate this technology, both in the industrial and in the
academic world, it is necessary that the Semantic Web technology reaches a
maturity level where it can comply with the quality requirements required by the
industry. Therefore, the Semantic Web technology needs both to be thoroughly
evaluated for providing objective results and to attain a massive improvement
in their quality.

Up to now, the evaluation of the Semantic Web technology was seldom made
but, as its use has spread, in the last few years numerous studies involving the
evaluation of this technology have appeared. This paper encourages researchers
first to increase the quality of their evaluations and, second, to aim for collective
improvements in their technology by means of benchmarking it.

The notion of software benchmarking presented in this paper is that of a
continuous process for improving software products, services, and processes by
systematically evaluating and comparing them to those considered to be the
best. Although software evaluations are performed inside benchmarking activ-
ities, benchmarking provides some benefits not obtained from software evalua-
tions.

This idea of benchmarking as a process to search for improvement and best
practices derives from the idea of benchmarking in the business management

community. However, it differs from some Software Engineering approaches in
which benchmarking is considered a software evaluation method for system com-
parisons.

This paper also presents a methodology for carrying out software benchmark-
ing activities that promotes the research community to drive the benchmarking,
since this community includes the experts that have developed the current tech-
nology.

In the Knowledge Web! European Network of Excellence, different bench-
marking studies are being carried out over several types of Semantic Web tech-
nologies, focusing on industry and research interests and needs. Here we present
how this methodology has been used in one of these benchmarking activities.

This paper is structured as follows. Sections 2, 3 and 4 present what software
evaluation is, the different conceptions of benchmarking, and our conception
of software benchmarking, respectively. Section 5 presents some properties of
evaluations when they are performed in software benchmarkings, and Section 6
describes what a benchmark suite is and its desirable properties. Sections 7 and
8 provide an overview of the software benchmarking methodology and show
how this methodology has been used for benchmarking the interoperability of
ontology development tools. Finally, Section 9 draws some conclusions from this

paper.

2 Software Evaluation

Software evaluations play an important role in different areas of Software Engi-
neering, such as Software Measurement, Software Experimentation or Software
Testing. In this paper, we present a view that covers all these areas, not focusing
on any of them.

According to the ISO 14598 standard [1], software evaluation is the systematic
examination of the extent to which an entity is capable of fulfilling specified
requirements; considering software as not just as a set of computer programs
but also as the produced procedures, documentation and data.

Software evaluations can take place all along the software life cycle. They
can be performed during the software development process by evaluating inter-
mediate software products or when the development has finished.

Although evaluations are usually performed inside the organisation that de-
velops the software, other groups of people, such as users or auditors, that are
independent of the organisation can perform the evaluations. The use of inde-
pendent third parties in software evaluations can be very effective, but these
evaluations are much more expensive for the organisations [2].

The goals of evaluating software depend on each specific case, but they can
be summarised from [3-5] in the following:

— To describe the software in order to understand it and to establish baselines
for comparisons.

! http://knowledgeweb.semanticweb.org/

— To assess the software with respect to some quality requirements or criteria
and determine the degree of desired qualities of the software product and its
weaknesses.

— To improve the software by identifying opportunities for improving its qual-
ity. This improvement is measured by comparing it with the baselines.

— To compare alternative software products or different versions of a same
product.

— To control the software quality by ensuring that it meets the needed level
of quality.

— To predict in order to take decisions, establishing new goals and plans for
accomplishing them.

The methods to follow for evaluating software vary from one author to an-
other and from one Software Engineering area to another. Nevertheless, from
the methods proposed in the areas of Software Evaluation [1,6], Software Ex-
perimentation [7-9], Software Measurement [4, 10], and Software Testing [11] we
can extract a common set of tasks to carry out in software evaluations:

1. To establish the evaluation requirements, setting its goals, the entities to
evaluate, and their relevant attributes.

2. To define the evaluation, explaining the data to collect, the evaluation criteria
and the mechanisms to collect data, implementing these mechanisms.

3. To produce the evaluation plan.

To execute the evaluation and to collect data.

5. To analyse the collected data.

e

3 Benchmarking in the Literature

In the last decades, the word benchmarking has become relevant within the busi-
ness management community. The definitions well known are those due to Camp
[12] and Spendolini [13]. Camp defined benchmarking as the search for indus-
try best practices that lead to superior performance, while Spendolini expanded
Camp’s definition by adding that benchmarking is a continuous, systematic pro-
cess for evaluating the products, services, and work processes of organisations
that are recognised as representing best practices for the purpose of organisa-
tional improvement. In this context, best practices are good practices that have
worked well elsewhere, are proven and have produced successful results [14].
These definitions highlight the two main benchmarking characteristics:

— Continuous improvement.
— Search for best practices.

The Software Engineering community does not share a common benchmark-
ing definition. Some of the most representative ones are:

— Kitchenham [15] and Weiss [16] define benchmarking as a software evaluation
method suitable for system comparisons. For Kitchenham, benchmarking is

the process of running a number of standard tests using a number of alter-
native tools/methods and assessing the relative performance of the tools in
those tests; and for Weiss benchmarking is a method of measuring perfor-
mance against a standard, or a given set of standards.

— Wohlin et al. [17] adopt the business benchmarking definition, considering
benchmarking as a continuous improvement process that strives to be the
best of the best through the comparison of similar processes in different
contexts.

4 Software Benchmarking

In this paper, we have adopted the ideas of continuous improvement and search
of best practices from business management benchmarking, which have led us to
consider software benchmarking as a continuous improvement process instead of
as a punctual activity. Equally important are the notion of software comparisons
through evaluations and the need for a systematic procedure for carrying out
the benchmarking activity.

This notion permits us to define software benchmarking as a continuous
process for improving software products, services and processes by systematically
evaluating and comparing them to those considered to be the best.

However, this definition does not limit the entities to be considered in the
benchmarking (software products, services or processes), the phase of the soft-
ware life cycle when benchmarking is performed, or who is responsible for car-
rying out the benchmarking. Nevertheless, software benchmarking is usually
performed over software products already developed and carried out by their
developers.

The reason for benchmarking software products instead of just evaluating
them is to obtain several benefits that cannot be obtained from software eval-
uations. A software evaluation shows us the weaknesses of the software or its
compliance to quality requirements. If several software products are involved in
the evaluation, we also obtain a comparative analysis of these products and rec-
ommendations for users. When benchmarking several software products, besides
all the benefits commented, we gain continuous improvement of the products,
recommendations for developers on the practices used when developing these
products and, from these practices, those that can be considered best practices.

5 Software Evaluation in Benchmarking Activities

Making software evaluations is not a straightforward task but, as it is a topic
that has been thoroughly examined both in theory and practice, several authors
have proposed different recommendations for carrying them out [3,8,9,18,19].

These recommendations are also applicable software evaluations that take
place in benchmarking activities. However, when defining this kind of software
evaluations, some additional recommendations must also be taken into account.

The most important recommendation that must be considered is that bench-
marking evaluations must be improvement-oriented. Their intended results
are not only to compare the different software products, but to know how to im-
prove them. This requires that the evaluations obtain not just some comparative
results but the practices that produced these results.

Benchmarking evaluations should be as general as possible, taking into ac-
count that they will be performed by different groups of people in different
locations and over different software.

Benchmarking is a process driven by a community, and to gain credibility
and impact its evaluations should also be community-driven.

Benchmarking evaluations should be reproducible as they are intended to
be used not just by the benchmarking partners but by the whole community.
This requires the evaluation to be detailed, using public data and procedures.

Performing evaluations consumes significant resources and, in benchmarking,
these evaluations must be performed by several groups of people. Therefore, they
should be as inexpensive as possible using common evaluation frameworks or
limiting the scope of the evaluation.

Furthermore, as benchmarking is a continuous process, benchmarking evalu-
ations should have a limited scope, leaving other objectives for the next bench-
marking iterations. A broader evaluation scope does not entail better results, but
it does entail more resources.

As the next section shows, most of these recommendations should also be
fulfilled by benchmark suites. Therefore, it is advisable to use benchmark
suites in benchmarking evaluations.

6 Benchmark Suites

A benchmark suite is a collection of benchmarks, being a benchmark a test or
set of tests used to compare the performance of alternative tools or techniques
[20].

A benchmark definition must include the following:

— The context of the benchmark, namely, which tools and which of their
characteristics are measured with it.

— The requirements for running the benchmark, namely, the tools (hardware
or software), data, or people needed.

— The input variables that affect the execution of the benchmark, and the
values that they will take.

— The procedure to execute the benchmark and to obtain its results.

— The evaluation criteria used to interpret these results.

A benchmark suite definition must include the definition of all its bench-
marks. Usually, all these benchmarks share some of their characteristics, such as
the context or the requirements. In that case, these characteristics are defined
at the benchmark suite level, and not individually for each benchmark.

6.1 Desirable properties of a benchmark suite

The following properties, extracted from the work of different authors [21,22,
20, 23], can help either to develop new benchmark suites or to assess the quality
of different benchmark suites before using them.

Although a good benchmark suite should have most of these properties, each
evaluation will require that some of them be considered before others.

It must also be considered that achieving a high degree of all these properties
in a benchmark suite is not possible since the increment of some has a negative
influence over others.

Accessibility A benchmark suite must be accessible to anyone interested. This
involves providing the necessary software to execute the benchmark suite,
its documentation, and its source code in order to increase transparency.
The results obtained when executing the benchmark suite should be made
public so that anyone can apply the benchmark suite and compare his/her
results with the ones available.

Affordability Using a benchmark suite entails a number of costs, commonly

human, software, and hardware resources. The costs of using a benchmark
suite must be lower than those of defining, implementing, and carrying out
any other experiments that fulfil the same goal.
Some ways of reducing the resources consumed in the execution of a bench-
mark suite are: automating the execution of the benchmark suite, providing
components for data collection and analysis, or facilitating its use for differ-
ent heterogeneous systems.

Simplicity The benchmark suite must be simple and interpretable. It must be
documented so anyone who wants to use it must be able to understand how it
works and the results that it yields. If the benchmark suite is not transparent
enough, its results will be questioned and it could be interpreted incorrectly.
To ease the process, the elements of the benchmark suite should have a
common structure and use and common inputs and outputs. Measurements
should have the same meanings across the benchmark suite.

Representativity The actions that perform the benchmarks composing the
benchmark suite must be representative of the actions that are usually per-
formed on the system.

Portability The benchmark suite should be executed on a variety of environ-
ments as wide as possible, and should be applicable to as many systems as
possible.

It should also be specified at a high enough level of abstraction to ensure
that it is portable to different tools and techniques and that it is not biased
against other technologies.

Scalability The benchmark suite should be parameterised to allow scaling the
benchmarks with varying input rates.

It should also scale to work with tools or techniques at different levels of
maturity. It should be applicable to research prototypes and commercial
products.

Robustness The benchmark suite must consider unpredictable environment
behaviours and should not be sensitive to factors not relevant to the study.
When running the same benchmark suite several times on a given system
under the same conditions, the results obtained should not change consider-
ably.

Consensus The benchmark suite must be developed by experts who apply their
knowledge of the domain and are able to identify the key problems. It should
also be assessed and agreed on by the whole community.

7 Software Benchmarking Methodology

This section summarises the software benchmarking methodology developed by
the author in the Knowledge Web European Network of Excellence. A detailed
description of this methodology can be found in [24].

This methodology has been inspired by works in different fields of qual-
ity improvement. The main input for this methodology were the benchmarking
methodologies existing in the business management community and their no-
tions of continuous improvement and best practices. Nevertheless, evaluation
and improvement processes proposed in the Software Engineering area were also
considered, such as the ones cited in Section 2.

The software benchmarking methodology defines a benchmarking process
with the main phases to carry out when benchmarking software and provides
a set of guidelines to follow. Therefore, this methodology has a twofold use: to
assist in carrying out software benchmarking activities, or to know, at a certain
point of time, which is the actual progress of a benchmarking activity.

The benchmarking process defined in this methodology is composed of a
benchmarking iteration that is repeated forever. Each iteration, as shown in
Figure 1, is composed of three phases (Plan, Ezperiment and Improve) and ends
with a Recalibration task.

(BENCHMARKING ITERATION h
/PLAN PHASE) (EXPERIMENT PHASE) /IMPROVE PHASE
P1. Goals identification E1l. Experiment definition I1. Benchmarking report
P2. Software and metrics E2. Experiment execution writing

identification E3. Experiment results 12. Findings communication
[~)| P3. Participant identification analysis I3. Improvement planning I:_

P4. Proposal writing I4. Improvement
P5. Management involvement I5. Monitor
P6. Partner selection
P7. Planning and resource
_allocation J - AN J

- J

] Recalibration task <

Fig. 1. The software benchmarking methodology

7.1 Plan phase

The Plan phase is composed of the tasks that must be performed for preparing
the benchmarking proposal, for obtaining support from the organisation man-
agement, for finding other organisations that participate in the benchmarking,
and for planning the benchmarking. These tasks are the following:

P1. Goals identification. In this task, the benchmarking initiator (the mem-
ber or members of the organisation who become/s aware of the need for
benchmarking) must identify the benchmarking goals according to the or-
ganisation goals and strategies and the benefits and the costs of performing
benchmarking. There can be different goals when performing benchmarking
in an organisation, such as assessing the performance and improving the
quality of the software over time, comparing the software with the software
that is considered the best, or establishing or creating standards by analysing
the different existing software.

P2. Software and metrics identification. In this task, the benchmarking ini-

tiator must perform an analysis of the software products developed in the
organisation in order to understand and document them, identifying their
weaknesses and their functionalities that need improvement.
Then, the benchmarking initiator must select the products that will be
benchmarked, the functionalities that are relevant for the study and the
evaluation criteria that will be used to assess these functionalities, according
to the organisation’s software analysis, the benchmarking goals, the benefits
and costs identified in the previous task, and other factors considered critical
in the organisation such as quality requirements, end user needs, etc.

P3. Participant identification. In this task, the benchmarking initiator must
identify and contact the members of the organisation involved in the se-
lected software and functionalities (managers, developers, end users, etc.)
and other relevant participants from outside the organisation (customers or
consultants).

The benchmarking initiator must compose the benchmarking team and, usu-
ally, he will be a member of it. This team should be small and should include
those organisation members whose work and interest are related to the soft-
ware and have an understanding of the software and valuable experience
with it.

The members of the benchmarking team must be aware of the time that
they will spend in the benchmarking activity and of their responsibilities
and must be trained in the tasks that they will have to perform.

P4. Proposal writing. In this task, the benchmarking team (and the bench-

marking initiator, if he is not part of the team) must write a document with
the benchmarking proposal. This proposal will be used as a reference along
the rest of the benchmarking process.
The benchmarking team must consider the different intended readers of the
benchmarking proposal, that is, organisation management, organisation de-
velopers, members of partner organisations, and the benchmarking team
themselves.

The proposal must include all the relevant information about the process:
the information identified in the previous benchmarking tasks (goals, ben-
efits, costs, software, metrics, members involved, and benchmarking team),
a description of the benchmarking process, and a more detailed description
of the benchmarking costs with the resources needed in the benchmarking
such as people, equipment, travel, etc.

P5. Management involvement. In this task, the benchmarking initiator must
bring the benchmarking proposal to the organisation management. This task
is of great importance because management’s approval is needed to continue
with the benchmarking process. Management’s support will also be needed
in the future when implementing changes based on the benchmarking either
in the software or in the organisation’s processes that affect the software.

P6. Partner selection. In this task, the benchmarking team must collect and
analyse information about the software products that are comparable to the
selected one and about the organisations that develop them. The bench-
marking team must select the software that will be considered in the bench-
marking study according to its relevance and use in the community or in the
industry and its use of the latest technological tendencies, its public avail-
ability, etc. In order to obtain better results with the benchmarking, the
chosen software should be those considered the best.

Then, the benchmarking team must make contact with someone from the
organisations that develop these software products to see whether they are
interested in becoming benchmarking partners. These benchmarking partners
will also have to establish a benchmarking team and to carry the benchmark-
ing proposal to their own organisation management for approval.

During this task, the benchmarking proposal will be modified including the
partner’s opinions and needs. This will result in an updated benchmarking
proposal that, depending on the magnitude of the modifications, should be
presented again to each partner organisation’s management for approval.

P7. Planning and resource allocation. In this task, the organisation man-
agements and the benchmarking teams from each partner must define the
planning of the rest of the benchmarking process, considering the different
resources that will be devoted to the benchmarking, and they must reach a
consensus on it. This planning must be considered and integrated into each
organisation’s planning.

7.2 Experiment phase

The Ezperiment phase is composed of the tasks where the experimentation over
the software products that are considered in the benchmarking is performed.
These tasks are the following;:

E1l. Experiment definition. In this task, the benchmarking teams from each
partner must define the experiment that will be performed on each of the
software products and they must reach a consensus on it.

The experiment must be defined according to the benchmarking goals, the
software selected functionalities and their corresponding criteria as stated
in the benchmarking proposal. The experiment must also provide objective
and reliable data of the software, not just of its performance but also of the
reasons of its performance, and it must be defined taking into account its
future reuse.

The benchmarking teams must also define and agree on the planning that
will be followed during the experimentation, which must be defined according
to the benchmarking planning previously defined.

E2. Experiment execution. According to the experimentation planning de-
fined in the previous task, the benchmarking teams must perform the exper-
iments defined on their software products.

The data obtained from all the experiments must be compiled, documented,
and expressed in a common format in order to facilitate its future analysis.

E3. Experiment results analysis. In this task, the benchmarking teams must
analyse the results obtained in the experiments, identifying and documenting
any significant differences in them, and they must determine the practices
that lead to these different results trying to identify whether, among the
practices found, some of them can be considered best practices.

Then, the benchmarking teams must write a report with all the findings
obtained during the experimentation, namely, experimentation results, dif-
ferences in the results, practices and best practices found, etc.

7.3 Improve phase

The Improve phase is composed of the tasks where the results of the benchmark-
ing process are produced and communicated to the benchmarking partners; and
the improvement of the different software products is performed in several im-
provement cycles. These tasks are the following:

I1. Benchmarking report writing. In this task, the benchmarking teams
must write the benchmarking report. This report is intended to provide an
understandable summary of the benchmarking carried out and must be writ-
ten bearing in mind its different audiences: managers, benchmarking teams,
developers, etc. from all the partner organisations.

The benchmarking report must include an explanation of the process fol-
lowed with all the relevant information from the updated version of the
benchmarking proposal, and the results and conclusions of the experiments
presented in the experiment report, highlighting the best practices found in
the experimentation and including any best practices found in the commu-
nity.

The benchmarking report must also include the recommendations of the
benchmarking teams for improving the software products according to the
experiment results, to the practices found, and to the community best prac-
tices.

I12.

13.

14.

I5.

Findings communication. In this task, the benchmarking teams must
communicate, in several meetings, the results of the benchmarking to their
organisations and, particularly, to all the involved members that were iden-
tified when planning the benchmarking. The goals of these meetings are:

— To obtain feedback from the involved members about the benchmarking

process, the results and the improvement recommendations.
— To obtain support and commitment from the organisation members for
implementing the improvement recommendations in the software.

Any feedback received during these communications must be collected, doc-
umented and analysed. This analysis may finally result in having to review
the work done and to update the benchmarking report.
Improvement planning. The last three tasks of the Improve phase (Im-
provement planning, Improvement and Monitor) form a cycle that must be
performed separately in each organisation. It is in these tasks where each
organisation benefits from the results obtained in the benchmarking.
In this task, the benchmarking teams and the organisation managements
from each partner must identify, from the benchmarking report and the
monitoring reports, which are the changes needed to improve their software
products. Besides, they must forecast the improvement to be obtained after
performing these changes.
Both the organisation management and the benchmarking team must pro-
vide mechanisms for ensuring the accomplishment of improvements in the
organisation and for measuring the software functionalities. These last mech-
anisms can be obtained from the Ezperiment phase.
Then, they must define the planning for improving the benchmarked soft-
ware, considering the different resources devoted to the improvement. This
planning must be then integrated into the organisation planning.
Improvement. In this task, the developers of each of the software prod-
uct must implement the necessary changes in order to achieve the desired
results. They must measure the state of the software before and after imple-
menting any changes using the measurement mechanisms provided by the
benchmarking team in the previous task. They must compare the result-
ing measurements with those obtained before implementing the changes and
with the improvement forecast.
Monitor. In each organisation, the benchmarking team must provide the
software developers with means for monitoring the organisation’s software.
The software developers must periodically monitor the software and write a
report with the results of this monitorisation. These monitorisation results
can cause a need for new improvements in the software and the beginning
of a new improvement cycle, having to perform again the two previously
mentioned tasks: Improvement Planning and Improvement.

7.4 Recalibration task

The recalibration task is performed at the end of each benchmarking iteration. In
this task, the benchmarking teams must recalibrate the benchmarking process

applying the lessons learnt while performing it. In that way, the organisation
(and the whole community) achieves improvement not just in the software, but
also in the benchmarking process. This recalibration is needed because both
software and organisations evolve over time.

8 Using the software benchmarking methodology

The software benchmarking methodology presented in the previous section has
been used, within Knowledge Web, in different benchmarking activities, which
are being (and will be) performed to improve ontology tools and to offer recom-
mendations on these tools for both research and industry users.

One of these activities is benchmarking the interoperability of ontology devel-
opment tools using RDF(S) as interchange language?, with the goal of evaluating
and improving the interoperability of these tools.

The experiment defined in the benchmarking involved the use of three bench-
mark suites for evaluating the RDF(S) importers of the tools, their RDF(S) ex-
porters, and the interoperability between each pair of tools. In these benchmark
suites, users were asked to import, export and interchange ontologies using their
tools and to record the behaviour of the tools in predefined templates.

Seven tools have participated in the benchmarking, four of which are ontology
development tools: KAON, OntoStudio, Protégé using its RDF backend, and
WebODE, and three are RDF repositories: Corese, Jena and Sesame. Although
the primary targets of the benchmarking were ontology development tools, the
benchmark suites defined just require the tools to be capable of importing and
exporting RDF(S).

Tool improvement has occurred before the Improve phase of the methodology
because developers were able to detect problems and correct their tools while
executing the benchmark suites.

Nevertheless, the manual execution of the experiments and analysis of the
results causes the benchmark suites to be costly. Sometimes tool developers have
automated the execution of the benchmark suites, but not always.

A description of the three benchmark suites used in the benchmarking can be
found in [25]. [26] includes how the benchmarking methodology was instantiated
for the RDF(S) interoperability benchmarking, how the benchmark suites were
defined, the detailed benchmarking results of each tool, and recommendations
for ontology developers, for software developers, and for anyone interested in
performing benchmarking activities.

This methodology is also being used for benchmarking the interoperability of
ontology development tools using OWL as interchange language3. Furthermore,
a proposal for using this methodology for benchmarking the performance and
the scalability of ontology development tools can be found in [27].

2 http://knowledgeweb.semanticweb.org/benchmarking_interoperability /
3 http://knowledgeweb.semanticweb.org/benchmarking_interoperability /owl/

9 Conclusion

This paper states a need for evaluating and benchmarking the Semantic Web
technology and provides some references that can be helpful in these activities.

It also presents the author’s view on software benchmarking and compares
it with other existing evaluation and benchmarking approaches.

For carrying out benchmarking activities, a benchmarking methodology is
presented that can help in assessing and improving software. And the use of
benchmark suites is advised when performing evaluations in benchmarking.

One of the strong points on benchmarking is its community-driven approach.
Benchmarking is performed by the experts in the community and the benefits
obtained after performing it will have an effect in the whole community.

Nevertheless, benchmarking is not the solution to every case. A preliminary
step would include the assessment of whether it is the correct approach or not,
being useful when the goals are to improve the software and to obtain the prac-
tices performed by others.

Acknowledgments

This work is partially supported by a FPI grant from the Spanish Ministry of Ed-
ucation (BES-2005-8024), by the IST project Knowledge Web (IST-2004-507482)
and by the CICYT project Infraestructura tecnolégica de servicios semanticos
para la web semdantica (TIN2004-02660). Thanks to Rosario Plaza for reviewing
the grammar of this paper.

References

1. ISO/IEC: ISO/IEC 14598-1: Software product evaluation - Part 1: General
overview. (1999)

2. Rakitin, S.R.: Software Verification and Validation, A Practitioner’s Guide. Artech
House (1997)

3. Basili, V., Selby, R., Hutchens, D.: Experimentation in software engineering. IEEE
Transactions on Software Engineering 12 (1986) 733-743

4. Park, R., Goethert, W., Florac, W.: Goal-driven software measurement - a guide-
book. Technical Report CMU/SEI-96-HB-002, Software Engineering Institute
(1996)

5. Gediga, G., Hamborg, K., Duntsch, I. In: Evaluation of Software Systems. Volume
Encyclopedia of Computer Science and Technology, Volume 44. (2002) 166-192

6. Basili, V.: Quantitative evaluation of software methodology. In: 1st Pan-Pacific
Computer Conference, Melbourne, Australia (1985)

7. Basili, V.R., Selby, R.W.: Paradigms for experimentation and empirical studies in
software engineering. Reliability Engineering and System Safety 32 (1991) 171-191

8. Perry, D., Porter, A., Votta, L.: Empirical studies of software engineering: a
roadmap. In Finkelstein, A., ed.: The Future of Software Engineering, ACM Press
(2000) 345-355

9. Freimut, B., Punter, T., Biffl, S., Ciolkowski, M.: State-of-the-art in empirical
studies. Technical Report ViSEK/007/E, Visek (2002)

10.

11.

12.

13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

IEEE: IEEE Std 1061-1998 IEEE Standard for a Software Quality Metrics Method-
ology. IEEE (1998)

Abran, A., Moore, J., Bourque, P., Dupuis, R., eds.: SWEBOK: Guide to the
Software Engineering Body of Knowledge. IEEE Press (2004)

Camp, R.: Benchmarking: The Search for Industry Best Practice that Lead to
Superior Performance. ASQC Quality Press, Milwaukee (1989)

Spendolini, M.: The Benchmarking Book. AMACOM, New York, NY (1992)
Wireman, T.: Benchmarking Best Practices in Maintenance Management. Indus-
trial Press (2003)

Kitchenham, B.: DESMET: A method for evaluating software engineering methods
and tools. Technical Report TR96-09, Department of Computer Science, University
of Keele, Staffordshire, UK (1996)

Weiss, A.: Dhrystone benchmark: History, analysis, scores and recommendations.
White paper, EEMBC Certification Laboratories, LLC (2002)

Wohlin, C., Aurum, A., Petersson, H., Shull, F., Ciolkowski, M.: Software inspec-
tion benchmarking - a qualitative and quantitative comparative opportunity. In:
Proceedings of 8th International Software Metrics Symposium. (2002) 118-130
Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers (2001)

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El-Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineer-
ing. IEEE Transactions on Software Engineering 28 (2002) 721-734

Sim, S., Easterbrook, S., Holt, R.: Using benchmarking to advance research: A
challenge to software engineering. In: Proceedings of the 25th International Con-
ference on Software Engineering (ICSE’03), Portland, OR (2003) 74-83

Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A methodology
for benchmarking java grande applications. In: Proceedings of the ACM 1999
conference on Java Grande. (1999) 81-838

Shirazi, B., Welch, L., Ravindran, B., Cavanaugh, C., Yanamula, B., Brucks, R.,
Huh, E.: Dynbench: A dynamic benchmark suite for distributed real-time systems.
In: Proc. of the 11 IPPS/SPDP’99 Workshops, Springer-Verlag (1999) 1335-1349
Stefani, F., Macii, D., Moschitta, A., Petri, D.: FFT Benchmarking for Digital
Signal Processing Technologies. In: 17th IMEKO World Congress, Dubrovnik,
Croatia (2003)

Garcia-Castro, R., Maynard, D., Wache, H., Foxvog, D., Gonzdlez-Cabero, R.:
D2.1.4 Specification of a methodology, general criteria and benchmark suites for
benchmarking ontology tools. Technical report, Knowledge Web (2004)
Garcia-Castro, R.: D2.1.5 Prototypes of tools and benchmark suites for bench-
marking ontology building tools. Technical report, Knowledge Web (2005)
Garcia-Castro, R., Sure, Y., Zondler, M., Corby, O., Prieto-Gonzélez, J., Bontas,
E.P., Nixon, L., Mochol, M.: D1.2.2.1.1 Benchmarking the interoperability of on-
tology development tools using RDF(S) as interchange language. Technical report,
Knowledge Web (2006)

Garcia-Castro, R., Gomez-Pérez, A.: Guidelines for benchmarking the performance
of ontology management apis. In Gil, Y., Motta, E., Benjamins, R., Musen, M.,
eds.: Proceedings of the 4th International Semantic Web Conference (ISWC2005).
Number 3729 in LNCS, Galway, Ireland, Springer-Verlag (2005) 277292

