
A Method for Performing an Exhaustive
Evaluation of RDF(S) Importers

Raúl Garćıa-Castro and Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial,
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia, asun}@fi.upm.es

Abstract. Interoperability is one of the main quality criteria required
for Semantic Web technology. In this paper we propose a method for
defining benchmark suites for evaluating the RDF(S) importers of Se-
mantic Web technology. We also show how this method was used for
developing a benchmark suite that is being used for benchmarking the
interoperability of ontology development tools.

1 Introduction

Interoperability is one of the main quality criteria required for Semantic Web
technology. Users need to know which tools allow them to interchange their on-
tologies (or part of them) with other users or with other tools, contributing to
the scalability of the Semantic Web. Therefore, the need of an objective evalu-
ation of these tools according to their interoperability, that can be adapted to
each case, is of high relevance.

As most of the Semantic Web information is available as RDF(S) ontologies
in the web, in this paper we propose a method for defining benchmark suites
for evaluating the RDF(S) import capabilities of Semantic Web technology. This
method allows to create tailored benchmark suites, focusing on the components
of interest of the RDF(S) knowledge model.

We also show how this method was used to develop a benchmark suite that is
being used for benchmarking the interoperability of ontology development tools,
in the context of the Knowledge Web Network of Excellence.

This paper starts presenting in Section 2 an overview of the benchmarking
methodology for ontology tools and showing in Section 3 how this methodology
is being applied for benchmarking the interoperability of ontology development
tools. Section 4 describes the method used for defining the benchmark suites
in the benchmarking and Section 5 presents the resulting benchmark suite for
RDF(S) importers. Finally, Section 6 discusses our results and points out ongoing
and future work.

2 Benchmarking Methodology for Ontology Tools

In the last decades, benchmarking has become relevant within the business
management community as a continuous process for comparing the products,

M. Dean et al. (Eds.): WISE 2005 Workshops, LNCS 3807, pp. 199–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

200 R. Garćıa-Castro and A. Gómez-Pérez

services, and work processes of an organisation with those of the organisations
that are recognised as representing best practices [1].

The Software Engineering community does not have a common benchmark-
ing definition. Some authors consider benchmarking as a software evaluation
method [2] while others adopt the business benchmarking definition, defining
benchmarking as a continuous improvement process that strives to be the best
of the best through the comparison of similar processes in different con-
texts [3].

A benchmark, in contrast, is a test that measures the performance of a system
or subsystem on a well-defined task or set of tasks [4]. However, Sim et al. [5]
propose to also measure tools and techniques to compare their performance.

This section summarises the benchmarking methodology developed by the
authors in the Knowledge Web Network of Excellence [6]. The benchmarking
methodology provides a set of guidelines to follow in benchmarking activities
over ontology tools. This methodology adopts and extends methodologies of
different areas such as business community benchmarking, experimental software
engineering and software measurement as described in [6].

The benchmarking methodology for ontology tools is composed of a bench-
marking iteration that is repeated forever. Each iteration is composed of three
phases (Plan, Experiment and Improve) and ends with a Recalibration task:

– Plan phase. Its main goals are: to produce a document with a detailed
proposal for benchmarking, including all the relevant information about it;
to search for other organisations that want to participate in the benchmark-
ing; and to agree on the benchmarking proposal and on the benchmarking
planning with all the participants.

– Experiment phase. In this phase, the organisations must define and ex-
ecute the evaluation experiments for each of the tools that participate on
the benchmarking. The evaluation results must be compiled and analysed,
determining the practices that lead to these results and identifying which of
them can be considered as best practices.

– Improve phase. This phase comprises the writing of the benchmarking
report, the communication of the benchmarking results to the participant
organisations and finally, in several improvement cycles, the improvement of
the tools and the monitorisation of this improvement.

The goal of the Recalibration task is not to improve the tools, but to im-
prove the benchmarking process itself using the lessons learnt while per-
forming it.

At the time of writing this paper, this methodology is being used in Knowl-
edge Web for benchmarking the interoperability of ontology development tools1.
A proposal for using this methodology for benchmarking the performance and
the scalability of ontology development tools can be found in [7].

1 http://knowledgeweb.semanticweb.org/benchmarking interoperability/

A Method for Performing an Exhaustive Evaluation 201

3 Interoperability Benchmarking

In the benchmarking activity that is taking place in Knowledge Web, the inter-
operability between two ontology development tools is assessed using RDF(S)
files to exchange ontologies. To exchange ontologies from one ontology develop-
ment tool into another, they must first be exported from the origin tool to a
RDF(S) file and then this file must be imported into the destination tool.

This scenario requires that the importers and exporters from/to RDF(S) of
the ontology development tools work accurately to be able to exchange ontologies
correctly. Therefore, the benchmarking is composed of the following phases:

Agreement phase. The quality of the benchmark suites is essential for the
results of the benchmarking. Therefore, the first step is that a group of
experts reach an agreement on the definition of these benchmark suites.

Evaluation phase 1. In this phase, the RDF(S) importers and exporters of
the ontology development tools are evaluated.

Evaluation phase 2. In this phase, the ontology exchange between ontology
development tools is evaluated.

The method described in the next section was used for defining the benchmark
suites that are being used for benchmarking the interoperability of ontology devel-
opment tools. Section 5 shows how this method was applied for defining a bench-
mark suite for RDF(S) importers, taking as an input the knowledge model of
RDF(S).

Similarly, for defining a benchmark suite for RDF(S) exporters, a common
core of the knowledge model of the ontology development tools was taken as an
input. This second benchmark suite is not described in this paper because of
space constraints.

4 Definition of the Benchmark Suite

The benchmark suite for evaluating RDF(S) importers is composed of bench-
marks that import an ontology with a simple combination of components of the
RDF(S) knowledge model (classes, properties, etc.) [8]. Assessing the import of
real, large or complex ontologies can be useless if we don’t know if the importer
can deal correctly with simple ones. Besides, it is easier to find problems in
simple cases than in complex ones.

We have considered the import of all the possible combinations of the compo-
nents of the RDF(S) knowledge model to make the benchmark suite exhaustive.
There are four different types of benchmarks:

– Benchmarks that import single components. For each component of
the knowledge model of RDF(S), we defined: a benchmark to import a single
component and another to import several components. For example, for
rdfs:Class, we defined two benchmarks to import:

• One class.
• Several classes.

202 R. Garćıa-Castro and A. Gómez-Pérez

– Benchmarks that import all the possible combinations of two com-
ponents with a property. We defined all the combinations of two com-
ponents related by a property, assigning cardinalities to the relations. These
cardinalities define the different number of benchmarks that will be per-
formed. For example, for rdfs:Class and the property rdfs:subClassOf, we
defined five benchmarks to import:

• One class that is subclass of another class, being this last class subclass
of a third one.

• One class that is subclass of several classes.
• Several classes that are subclass of the same class.
• One class that is subclass of another class and viceversa, forming a cycle.
• One class that is subclass of himself, forming a cycle.

– Benchmarks that import combinations of more than two com-
ponents that usually appear together in RDF(S) graphs, such as
properties that have both domain and range (rdf:Property with rdfs:domain
and rdfs:range); statements that have subject, predicate and object
(rdf:Statement with rdf:subject, rdf:predicate and rdf:object); and definitions
of lists (rdf:List with rdf:first, rdf:rest and rdf:nil). For example, for a prop-
erty with a domain and a range, we defined five benchmarks to import:

• One property that has as domain a class and as range another class.
• One property that has as domain a class and as range several classes.
• One property that has as domain several classes and as range another class.
• One property that has as domain several classes and as range another

several classes.
• One property that has as domain and range the same class.

– Benchmarks that import RDF(S) graphs with the different vari-
ants of the RDF/XML syntax2:

• Different syntax of URI references: absolute URI references, URI refer-
ences relative to a base URI, URI references transformed from rdf:ID
attribute values, and URI references relative to an ENTITY declaration.

• Language identification attributes (xml:lang) in tags.
• Abbreviations of: empty nodes, multiple properties, typed nodes, string

literals, blank nodes, containers, collections, and statements.

5 Resulting Benchmark Suite

The resulting benchmark suite obtained using the previous method is composed
of a huge number of benchmarks, because of the large number of combinations
that can exist between RDF(S) components. To make the benchmark suite more
usable, we propose to prune it according to its intended use and to the kind of
tools that it is expected to evaluate.
2 http://www.w3.org/TR/rdf-syntax-grammar/

A Method for Performing an Exhaustive Evaluation 203

For example, for evaluating the RDF(S) importers of ontology de-
velopment tools, we only considered the components of the knowledge
model of RDF(S) that are most frequently used for modelling ontologies
in these tools: rdfs:Class, rdf:Property, rdfs:Literal, rdf:type, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:range, and rdfs:domain; not dealing with the rest of
the RDF(S) components.

The definition of each benchmark in the benchmark suite, as Table 1 shows,
includes the following fields:

– An identifier, for tracking the different benchmarks.
– A description of the benchmark in natural language.
– A graphical representation of the ontology to be imported in the benchmark.
– A file containing the ontology in the RDF/XML syntax.

Table 1. An example of a benchmark definition

Identifier I14
Description Import one class that has the same property with several

other classes
Graphical
representation

RDF/XML file

<rdf:RDF xmlns="http://www.w3.org/2000/01/rdf-schema#"
xmlns:g1="http://www.test.org/graph14#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<Class rdf:about="http://www.test.org/graph14#class1">
<g1:prop1 rdf:resource="http://www.test.org/graph14#class2"/>
<g1:prop1 rdf:resource="http://www.test.org/graph14#class3"/>

</Class>
<Class rdf:about="http://www.test.org/graph14#class2"/>
<Class rdf:about="http://www.test.org/graph14#class3"/>

</rdf:RDF>

The resulting benchmark suite3 contains 72 benchmarks grouped in the fol-
lowing categories: class benchmarks, metaclass benchmarks, subclass bench-
marks, class and property benchmarks, property benchmarks, subproperty
benchmarks, property with domain and range benchmarks, instance benchmarks,
instance and property benchmarks, and syntax and abbreviation benchmarks.
Table 2 shows the benchmarks corresponding to the first three categories and
Table 3 shows the graphical representations of these benchmarks.

3 http://knowledgeweb.semanticweb.org/benchmarking interoperability/
rdfs import benchmark suite.html

204 R. Garćıa-Castro and A. Gómez-Pérez

Table 2. Benchmarks that import classes, metaclasses, and subclasses

Id. Description
Class I01 Import just one class
benchmarks I02 Import several classes with no properties between them
Metaclass
benchmarks

I03 Import one class that is instance of another class, being this last
class instance of a third one

I04 Import one class that is instance of several classes
I05 Import several classes that are instance of the same class
I06 Import one class that is instance of another class and viceversa
I07 Import just one class that is instance of himself

Subclass
benchmarks

I08 Import one class that is subclass of another class, being this last
class subclass of a third one

I09 Import one class that is subclass of several classes
I10 Import several classes that are subclass of the same class
I11 Import one class that is subclass of another class and viceversa,

forming a cycle
I12 Import just one class that is subclass of himself, forming a cycle

Table 3. Graphical representation of the benchmarks shown in Table 2

I01 I02 I03 I04

I05 I06 I07 I08

I09 I10 I11 I12

A Method for Performing an Exhaustive Evaluation 205

The execution of each benchmark in the benchmark suite comprises the fol-
lowing steps:

1. To define in the ontology development tool the expected result of importing
the RDF(S) ontology.

2. To import the file with the RDF(S) ontology into the tool.
3. To compare the imported ontology with the expected ontology to check

whether they are the same.

Although these steps can be performed manually, some automatic mean of
performing them (or part of them) is highly advised when dealing with many
benchmarks, specially for comparing the expected ontology with the imported
one.

The expected results of a benchmark execution are:

– If the tool passes the benchmark or does not.
– If not, the reasons for not passing the benchmark. It could be because of a

wrong implementation of the importer or because the tool cannot represent
the RDF(S) component in its own knowledge model.

– If the tool does not pass the benchmark and is corrected to pass it, the
changes performed.

The last two results have the goal of obtaining from the tool developers the
practices used when developing the RDF(S) importers. This can allow to extract,
if possible, the best practices performed by these developers.

6 Conclusions and Future Work

In this paper we present a method for defining benchmark suites for evaluating
the RDF(S) import capabilities of Semantic Web technology. There are other
benchmark suites for RDF like the RDF Test Cases [9], but they are not exhaus-
tive enough and they are not flexible enough to be used for different evaluations.
The RDF Test Cases are quite concrete, as they just deal with certain issues
addressed by the RDFCore Working Group.

We also show how the method was applied for defining a benchmark suite for
evaluating the RDF(S) importers of ontology development tools, and how this
benchmark suite is being used for benchmarking the interoperability of ontology
development tools in Knowledge Web.

This method was also used to define a benchmark suite for evaluating the
RDF(S) exporters of ontology development tools4. Instead of taking as an input
the RDF(S) knowledge model, a common core of the knowledge models of the
ontology development tools was used to define the benchmark suite. The method
can also be used to define benchmark suites specific to other languages such as
OWL5 or specific to the knowledge model of a certain tool.
4 http://knowledgeweb.semanticweb.org/benchmarking interoperability/

rdfs export benchmark suite.html
5 http://www.w3.org/TR/owl-features/

206 R. Garćıa-Castro and A. Gómez-Pérez

One important issue when defining benchmark suites with this method is to
prune the resulting benchmark suite to make it more usable, as considering all the
relations between RDF(S) components can result in thousands of benchmarks.

Combining the definitions of the benchmarks, the benchmark suites can be
improved to include new benchmarks with more complex structures or with a
higher number of components.

One future line of work would be to define different RDF(S) benchmark suites
for different kinds of tools (ontology editors, ontology repositories, etc.) and for
different kind of ontologies (ontologies with linear taxonomies, with graphs with
cycles, with metaclasses, etc.).

Acknowledgments

This work is partially supported by a FPI grant from the Spanish Ministry of Ed-
ucation (BES-2005-8024), by the IST project Knowledge Web (IST-2004-507482)
and by the CICYT project Infraestructura tecnológica de servicios semánticos
para la web semántica (TIN2004-02660).

References

1. Spendolini, M.: The Benchmarking Book. AMACOM, New York, NY (1992)
2. Kitchenham, B.: DESMET: A method for evaluating software engineering methods

and tools. Technical Report TR96-09, Department of Computer Science, University
of Keele, Staffordshire, UK (1996)

3. Wohlin, C., Aurum, A., Petersson, H., Shull, F., Ciolkowski, M.: Software inspec-
tion benchmarking - a qualitative and quantitative comparative opportunity. In:
Proceedings of 8th International Software Metrics Symposium. (2002) 118–130

4. Sill, D.: comp.benchmarks frequently asked questions version 1.0 (1996)
5. Sim, S., Easterbrook, S., Holt, R.: Using benchmarking to advance research: A chal-

lenge to software engineering. In: Proceedings of the 25th International Conference
on Software Engineering (ICSE’03), Portland, OR (2003) 74–83

6. Garćıa-Castro, R., Maynard, D., Wache, H., Foxvog, D., González-Cabero, R.:
D2.1.4 specification of a methodology, general criteria and benchmark suites for
benchmarking ontology tools. Technical report, Knowledge Web (2004)

7. Garćıa-Castro, R., Gómez-Pérez, A.: Guidelines for Benchmarking the Performance
of Ontology Management APIs. In: To appear in Proceedings of the 4th Interna-
tional Semantic Web Conference (ISWC2005), Galway, Ireland (2005)

8. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation 10 February 2004 (2004)

9. Grant, J., Beckett, D.: RDF Test Cases. W3C Recommendation 10 February 2004
(2004)

	Introduction
	Benchmarking Methodology for Ontology Tools
	Interoperability Benchmarking
	Definition of the Benchmark Suite
	Resulting Benchmark Suite
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

